Correct predictions are in blue. If we detect only a subset of a labelled sentence, we highlight the caught part as blue, the missing part light blue. False positives are in green and false negatives are in red.

Problem 045 (Covering arrays) — Constraint detection

The covering array problem is formulated as follows . A covering array $ CA -LRB- t , k , g -RRB- $ of size $ b $ and strength $ t $ , is a $ k x b $ array $ A = -LRB- a _ -LCB- ij -RCB- -RRB- $ over $ Z_g = -LCB- 0,1,2 , - , g-1 -RCB- $ with the property that for any t distinct rows $ 1 > = r_1 > = r_2 > = - > = r_t > = k $ , and any member $ -LRB- x_1 , x_2 , - , x_t -RRB- $ of $ Z ^ -LCB- t_g -RCB- $ there exists at least one column $ c $ such that $ x_i $ equals the $ -LRB- r_i , c -RRB- - th $ element of $ A$ for all $ 1 > = i > = t $ . Informally , any t distinct rows of the covering array must encode column-wise all numbers from $ 0 $ to $ g ^ -LCB- t-1 -RCB- $ -LRB- repititions are allowed -RRB- .

Problem 045 (Covering arrays) — Detection of the decisions and objects to be modeled

The covering array problem is formulated as follows . A covering array $ CA -LRB- t , k , g -RRB- $ of size $ b $ and strength $ t $ , is a $ k x b $ array $ A = -LRB- a _ -LCB- ij -RCB- -RRB- $ over $ Z_g = -LCB- 0,1,2 , - , g-1 -RCB- $ with the property that for any t distinct rows $ 1 > = r_1 > = r_2 > = - > = r_t > = k $ , and any member $ -LRB- x_1 , x_2 , - , x_t -RRB- $ of $ Z ^ -LCB- t_g -RCB- $ there exists at least one column $ c $ such that $ x_i $ equals the $ -LRB- r_i , c -RRB- - th $ element of $ A$ for all $ 1 > = i > = t $ . Informally , any t distinct rows of the covering array must encode column-wise all numbers from $ 0 $ to $ g ^ -LCB- t-1 -RCB- $ -LRB- repititions are allowed -RRB- .

Back to list