NLP for CP
Addressing Constraint Programming with Natural Language Processing
Home
Resources
Publications
Correct
predictions are in
blue
. If we detect only a subset of a labelled sentence, we highlight the caught part as
blue
, the missing part
light blue.
False positives
are in
green
and
false negatives
are in
red
.
Problem 044 (Steiner triple systems) — Constraint detection
The
ternary
Steiner
problem
of
order
n
consists
of
finding
a
set
of
$
n.
-LRB-
n-1
-RRB-
/
6
$
triples
of
distinct
integer
elements
in
$
\
-LCB-
1
,
\
dots
,
n
\
-RCB-
$
such
that
any
two
triples
have
at
most
one
common
element
.
It
is
a
hypergraph
problem
coming
from
combinatorial
mathematics
where
n
modulo
6
has
to
be
equal
to
1
or
3
.
One
possible
solution
for
$
n
=
7
$
is
-LCB-
-LCB-
1
,
2
,
3
-RCB-
,
-LCB-
1
,
4
,
5
-RCB-
,
-LCB-
1
,
6
,
7
-RCB-
,
-LCB-
2
,
4
,
6
-RCB-
,
-LCB-
2
,
5
,
7
-RCB-
,
-LCB-
3
,
4
,
7
-RCB-
,
-LCB-
3
,
5
,
6
-RCB-
-RCB-
.
The
solution
contains
$
7
*
-LRB-
7-1
-RRB-
/
6
=
7
$
triples
.
This
is
a
particular
case
of
the
more
general
Steiner
system
.
More
generally
still
,
you
may
refer
to
Balanced
Incomplete
Block
Designs
-LRB-
BIBD
:
prob028
-RRB-
.
In
fact
,
a
Steiner
Triple
System
with
n
elements
is
a
BIBD$
-LRB-
n
,
n.
-LRB-
n-1
-RRB-
/
6
,
-LRB-
n-1
-RRB-
/
2
,
3
,
1
-RRB-
$
Problem 044 (Steiner triple systems) — Detection of the decisions and objects to be modeled
The
ternary
Steiner
problem
of
order
n
consists
of
finding
a
set
of
$
n.
-LRB-
n-1
-RRB-
/
6
$
triples
of
distinct
integer
elements
in
$
\
-LCB-
1
,
\
dots
,
n
\
-RCB-
$
such
that
any
two
triples
have
at
most
one
common
element
.
It
is
a
hypergraph
problem
coming
from
combinatorial
mathematics
where
n
modulo
6
has
to
be
equal
to
1
or
3
.
One
possible
solution
for
$
n
=
7
$
is
-LCB-
-LCB-
1
,
2
,
3
-RCB-
,
-LCB-
1
,
4
,
5
-RCB-
,
-LCB-
1
,
6
,
7
-RCB-
,
-LCB-
2
,
4
,
6
-RCB-
,
-LCB-
2
,
5
,
7
-RCB-
,
-LCB-
3
,
4
,
7
-RCB-
,
-LCB-
3
,
5
,
6
-RCB-
-RCB-
.
The
solution
contains
$
7
*
-LRB-
7-1
-RRB-
/
6
=
7
$
triples
.
This
is
a
particular
case
of
the
more
general
Steiner
system
.
More
generally
still
,
you
may
refer
to
Balanced
Incomplete
Block
Designs
-LRB-
BIBD
:
prob028
-RRB-
.
In
fact
,
a
Steiner
Triple
System
with
n
elements
is
a
BIBD$
-LRB-
n
,
n.
-LRB-
n-1
-RRB-
/
6
,
-LRB-
n-1
-RRB-
/
2
,
3
,
1
-RRB-
$
Back to list